K*ou No.*

21202

B. Sc. (Pass Course) 2nd Semester Examination – May, 2019

CHEMISTRY - II (PHYSICAL CHEMISTRY)

Paper: CH-202

Time: Three hours]

[Maximum Marks : 29

Before answering the questions, candidates should ensure that they have been supplied the correct and complete question paper. No complaint in this regard, will be entertained after examination.

Note: Attempt five questions in all including Question No. 1 which is compulsory. Select one question from each Section. All questions carry equal marks.

- 1. (a) What is the half life period of a zero order reaction? $1 \times 5 = 5$
 - (b) Describe the effect of temperature on rate of reaction graphically.
 - (c) Give the significance of Nernst equation.
 - (d) Differentiate between molecularity and order of a chemical reaction.
 - (e) Explain Buffer mechanism of Buffer action.

UNIT - 1

- 2. (a) What is rate equation? Derive the integrated rate law expression for 2nd order reaction.
 - (b) A first order reaction is 40% complete in 50 minutes. Calculate the value of the rate constant. In what time will the reaction be 80% complete? 3
- 3. (a) What is the order of a reaction? Explain the methods for determining order of a reaction.
 - (b) Show graphically the variation of half life for a 1st order reaction with concentration.

UNIT - II

- (a) The temperature coefficient of the rate of reaction is 2.3. How many ties will the rate of reaction increase if the temperature is raised by 25 K.
 - (b) What is frequency factor? Give its significance. 2
- Explain in detail the evaluation of rate constant using Collision theory of bimolecular chemical reaction.

UNIT - III

- (a) What is specific conductance and equivalent conductance? Discuss their variation with concentration.
 - (b) Calculate the degree of dissociation of 0.01 M solution of formic acid. Ka = 2.1*10⁻⁴ at 298 K. 2

P. T. O.

- 7. (a) What is transport number? What are factors affecting it?
 - (b) Explain Hittorf's method for the detect transport number.

UNIT - IV

- 8. (a) State Kohlarausch's Law of independence of ions. The molar conductivities dilution of sodium chloride, hydrochlorodium acetate are 136.4, 426.1 and mol⁻¹ respectively at 25°C.
 Calculate the molar conductivity dilution for acetic acid.
 - (b) Define pH.
- 9. (a) What are the various applications of conds
 - (b) Derive Henderson Hazelbech equation